Lecture 4. Linear First-Order Equations

In this lecture notes, we will talk about

e (lassification of Differential Equations
o Order of the equation
o Linear/non-linear equations

e Linear First-Order Equations

o Integrating Factor Method

Classification of Differential Equations
Order: The order of a differential equation is the order of the highest derivative that appears in the equation.

Linear Differential Equation: A linear differential equation is a differential equation that is defined by a
linear polynomial in the unknown function and its derivatives, that is,

ao(z)y + a1(z)y + as(z)y" - + an(z)y™ = b(z)

where ag(z), . .., a,(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and
Y, ... ,y(”) are the successive derivatives of an unknown function y of the variable .

Remark. Linearity is important because the structure of the family of solutions to a linear equation is relatively
simple. Linear equations can usually be explicitly solved.
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Example 1. Determine the order of the given differential equation and state whether the equation is linear or
nonlinear.
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Exercise 2. Determine whether each first-order differential equation is separable, linear, both, or neither.
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An example. Find a general solution to the differential equation
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Linear First-order Equations

A linear first-order equation is a differential equation of the form

Y+ Py = Q)

where the coefficient functions P(z) and @ () are continuous on some interval on the z-axis.
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e This equation can always be solved using the integrating factor

e Multiplying by p(z) gives
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D, [y(z) ) efP(z)dm] _ Q(x)efP(m)dw
e Integrating both sides gives
y(x)efP(a:)dm _ / (Q(x)efP(x)da:)dm L C
e Finally, solving for y(x) gives

y(z) = e~/ Pe)is {/ (Q(m)efp(z)dm)dx n C’]

e Note: This formula is not to be memorized, but rather illustrates a general method that can be applied in
specific cases.



We summarize the steps of the method as follows:

Method of Solution of Linear First-Order Equations Remk: Wo need Ho mohe sure
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Step 1. C(B‘rf\npute the integrating factor p(z) = el P(z)dz

Step 2. Multiply both sides of the differential equation by p(z).

Step 3. Next, recognize the left-hand side of the resulting equation as the derivative of a product:

D.[p(z)y(z)] = p(z)Q(z)

Step 4. Finally, integrate this equation,
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then solve for y(x) to obtain the general solution of the original differential equation.

Example 3. Find a general solution to the differential equation
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Example 4. Solve the following initial value problem:

dy
tZ2 1 3y =5t
a Y

with y(1) = 2.
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Exercise 5. Solve the initial value problem

1
/ —2
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Yy - 4y z%, y(1)

Solution. This is a linear first-order equation in the standard form. We compute hte integral factor”
p(z) = efﬁdm — ehn(e+4) _ , +4
Multiplying the both sides of the equation by p(z) = = + 4 gives
(z+4)y +y=2"+4z?
Integration on both sides, we have
p(x)y=(z+4)y=lnz -4z ' +C
Thus we have

y(z) = L(Cﬂnm— i)
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The initial condition y(1) = 7 allows us to determine the value of C':
1
7= g(C—4)soC:39.

The solution to the initial value problem is therefore




Exercise 6. Solve the initial value problem.

d
% —2zy =8z, y(0)=0

Solution. This is a linear first-order equation in the standard form. We compute the integral factor
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Multiplying the both sides of the equation by e’ gives

integrating we get
8
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finally solving for y(x) gives

Usingy(1) = 0 we get C' = 4, giving



